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Abstract

Motivated by the experimental findings in Part I, the growth of a kink band in a uniaxial composite is investigated
using two- and three-dimensional micromechanical models. The models include both a local and a global imperfection
and were preloaded in compression and then sheared under displacement control. An inclined kink band initiates from
the local imperfection and grows across the specimen. Similar results were obtained for pure compression loading. The
simulated kink bands are quite similar to those observed experimentally; though, when J, plasticity is used to model the
inelastic matrix, their inclination is lower than in experiments. The calculated band inclination is shown to be insensitive
to many model parameters including imperfection characteristics, fiber diameter, volume fraction, and matrix yield
stress. However, it is quite sensitive to the dilatancy of the matrix as demonstrated by the use of the Drucker-Prager
constitutive model for the matrix. It was found that the ability of the matrix to deform in the direction transverse to the
fibers plays an important role in allowing larger, more realistic kink band inclinations to be obtained. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The experimental results in Part I of this series provide direct information on how inclined kink bands
grow in aligned fiber composites. In addition, the geometric characteristics of growing kink bands were
accurately established. In Part II, we extend the 2-D and 3-D micromechanical models of Kyriakides et al.
(1995) ! and Hsu et al. (1998)! and use them to simulate compression-shear tests like the ones discussed in
Part I. It will be shown that, as was the case experimentally, this type of loading allows controlled growth of
kink bands. As has been established in past studies, failure of such composites is governed by the inter-
action of geometric imperfections in the form of fiber misalignment with the nonlinear shear response of the
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composites. Micromechanical models analyzed in the references mentioned had imperfections which were
generally global. In the present effort, in order to help initiate kink bands locally, local imperfections are
included in the models as described below.

2. Micromechanical models

The general characteristics of the 2-D and 3-D models are the same as those described in the studies of
pure compression in the two references mentioned above. In Vogler et al. (2000),' the two models were
modified in order to enable simulation of failure under combined compression and shear. Those modifi-
cations are also adopted here with some additional changes, which will enable us to simulate local initiation
and growth of kink bands. The general characteristics of the models are as follows. In the 2-D model, the
composite is idealized as an alternating array of fiber and matrix layers as shown in Fig. 1. The fiber
thickness () and the fiber spacing are chosen so as to end up with the required fiber volume fraction (vy) of
the composite. In the 3-D model, the fibers are circular with diameter / and are distributed in a hexagonal
arrangement in the matrix as shown in Fig. 2. The spacing of the fibers (c) is related to the fiber diameter
and volume fraction through the relation:

[nV3
c=h oo (1)

In both types of models, unless otherwise stated, #=7 um and vy = 60%.
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Fig. 1. Geometry of 2-D composite micromodel with global and local fiber imperfections shown loaded in compression and shear.
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Fig. 2. Geometry of composite idealized as an hexagonal array of fibers for use in the 3-D micromodel.

Two imperfections are included in the models. The first, referred to as the global imperfection is a si-
nusoidal waviness of the fibers along the x,-direction with amplitude a and half wavelength A. This im-
perfection is uniform across the width of the microsections and is expressed as

X
— i 2
v, acos — (2)

A local imperfection is added to a strip of N fibers at the free left side edge to initiate a kink band. This
imperfection consists of a sine wave of half wavelength A,, which begins at a distance d, from the top of the
microsection. Its amplitude is a, at x, = 0 but decays linearly over the N fibers it affects. The local im-
perfection is expressed as
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—2a(1 = 51), 0<x < dy,
Vo2 = —az(l—%){lﬂ-COS(@)}, dzgxlgdz-l-)v% (3)
0, dy + 7y <x1 <4,

where 1 <i <N is the fiber number counted from the left edge. Unless otherwise stated N = 12 both for 2-D
and 3-D simulations. (Note that in the region of influence of the local imperfection, v, is somewhat less than
60%.)

In the 3-D models, periodicity of the microstructure in the x;-direction allows consideration of just the
representative slice of the material shown in Fig. 2 of thickness v/3¢/2. The characteristic slice is shown in
Fig. 3 without the local imperfection. The two lateral surfaces of the slice are assumed to have zero dis-
placement in the x3-direction.

For pure compression calculations, Kyriakides et al. (1995)" and Hsu et al. (1998)! invoked periodicity in
the x;-direction. Thus, their models were limited to heights of either A or A/2. For the present problem,
periodicity no longer exists due to the addition of shear. Instead, microsections one-half period long and
width b defined by the number of fibers n; are used. In both type models, the fibers and matrix are dis-
cretized with finite elements. Details about the discretizations can be found in Kyriakides et al. (1995)! and
Hsu et al. (1998)!.

Axial loading is such that the top and bottom surfaces of the microsections in Figs. 1 and 3 remain plane.
The top of each model (x; = 0) is fixed in the x;-direction. A vertical force is then prescribed incrementally
at the bottom (x; = 4). In simulations of shear under constant axial stress (¢ — y loading path), the initial
axial loading is applied as just described to allow for Poisson expansion. The model is then sheared by fixing
the top surface and prescribing the same displacement in the x,-direction to all nodes at the bottom end of
the model. Some redistribution of axial stresses may occur during the shearing, affecting somewhat the
constraint at the ends of the fibers. However, this effect was found to be limited to narrow regions at the
ends of the model, and the results were generally not sensitive to the details of the boundary conditions
imposed at the top and bottom surfaces.

The left and right sides of both models are free. As in the experiments, this causes some nonuni-
formity in the axial stress as well as in the shear stress as discussed in Vogler et al. (2000)'. A large aspect
ratio will reduce the effect of the nonuniformities, but too large an aspect ratio can inhibit the develop-
ment of a kink band for the reasons discussed in the next section. To alleviate the last difficulty, the
local imperfection is placed at a distance @, from the top rather than at the center of the model as shown in
Fig. 1.

Key components of these models are the constitutive laws adopted for the fibers and matrix. As in the
past, we assume the fibers to be isotropic and linearly elastic with the properties given in Table 1 (Panel A).
For the majority of calculations, the matrix is modeled as a finitely deforming J,-type elasto-plastic solid
which hardens isotropically. The properties of the matrix in each model were extracted from a torsion test
on a filament wound thin-walled tube of this material as follows. In each case, a representative micromodel
was loaded under pure shear (layered for 2-D, hexagonal fiber array in matrix for 3-D). The fibers were
assigned the properties in Table 1 (Panel A). The matrix properties were calculated iteratively such that
each model composite matches the measured shear response (Hsu et al., 1998!). For strains higher than 9%
in the 2-D case and 11% in the 3-D case, the stress—strain responses are assumed to be perfectly plastic. The
two matrix stress—strain responses established in this manner are compared with results from a tension test
on neat PEEK in Fig. 4(a). The matrix properties used for the 2-D model are stiffer than the neat properties
for all strain levels. Those used for the 3-D models are similar to neat properties at lower strains (<3%) but
are stiffer for higher strains. Fig 4(b) shows a comparison of the measured shear response and that from the
2-D model using the extracted stress—strain response. Agreement with experimental data is quite good. The
one obtained from the 3-D model is very similar to this and will not be shown.
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Fig. 3. Characteristic section of the idealized composite used for the 3-D micromodel loaded in compression and shear.

The inelastic behavior of PEEK is complex. Though J,-type plasticity is sufficient for the relatively
limited nonlinearity involved up to the onset of failure, it does not capture all of the subtleties of the
composite’s behavior in the post-failure regime. Most notable is the inability of J,-type plasticity to model
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Table 1
Material properties of the composite and its constituents

Panel A: APC-2/4S4 composite

Ej msi (GPa) E» msi (GPa) G, msi (GPa) Via vf

18.62 (128) 1.533 (10.57) 0.84 (5.79) 0.3 60%

Panel B: AS4 fibers

E; msi (GPa) Vi

31.0 (214) 0.263

Panel C: APC-2 (PEEK) matrix

2-D Models 3-D Model

E, ksi (GPa) om ksi (MPa) Vi E,, ksi (GPa) Gomksi (MPa) Vi
893 (6.14) 11.9 (82.1) 0.356 594 (4.10) 9.5 (65.5) 0.356

the pressure sensitivity of this polymeric matrix. It is well known that the nonlinear behavior of many
polymers, including PEEK, is sensitive to imposed hydrostatic pressure (Christiansen et al., 1971; Santore
et al., 1991; Sauer et al., 1973; Spitzig and Richmond, 1979; see also Fig. 5 of Hsu et al. (1999b)). A second
restriction of J,-type plasticity is its assumption of zero plastic dilatancy. While this assumption is justified
for many metals, it is known that polymers can exhibit inelastic dilatation (same references). It will be
shown that these two factors can play a role in the characteristics of kink bands during their initiation. To
address to some degree these deficiencies, the Drucker and Prager (D-P) (1952) plasticity model is also
implemented. The yield function is of the form

f=\3h+al, =k, (4a)
where o and k are constants and
I = o, Jr = %Sijsij and Sij = 0jj — %O-kké[j- (4b)

A variant of this model has been used previously in Hsu et al. (1999b). Here, the rate-independent asso-
ciative version is used with o = 0.1415. This value was found by Hsu et al. to allow the model to reproduce
aspects of the composites’ nonlinear behavior under shear and transverse compression. The in situ matrix
has the same shear response as for the J,-type model (Fig. 4b). We first note that Christiansen et al. (1971),
Sauer et al. (1973), Spitzig and Richmond (1979) and others have shown that yield function (4) with
0.05 < o < 0.2 captures the pressure sensitivity of the yielding of several polymers (amorphous and crys-
talline). Evidence that polymers dilate under shear has also been published but is more sketchy (Pixa et al.,
1988; Santore et al., 1991). At the same time, we know from Hsu et al. (1999b) that this model does not
provide an adequately broad and accurate description of the composite’s nonlinearity. We adopt it because
it will allow us to demonstrate the sensitivity of aspects of the initiation of kink bands to variables not
available in J, plasticity.

3. Predictions

The two models are now used to study the details of the initiation of kink bands and the way they grow
across specimens. The 2-D microsections analyzed have a half wavelength of 4 = 1434 and are 150 fibers
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Fig. 4. (a) Comparison of matrix properties used in the 2-D and 3-D micromodels with neat PEEK data. (b) Experimental shear
response and response from 2-D model.

wide which corresponds to a physical width of 250/4. The 3-D models have a half wavelength of 41 = 1124
and are 120 fibers wide which corresponds to a physical width of 148/4. These imply respective micromodel
aspect ratios (b/1) of approximately 1.75 and 1.32. All geometric parameters of the models are listed in

Table 2.
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Table 2

Geometric parameters for standard 2-D and 3-D micromechanical models
Model type v ng 2/h alh Ja/h a/h N dr/h
2-D 0.60 150 143 0.5 12 1 12 95
3-D 0.60 120 112.5 0.5 12 1 12 69

3.1. Shearing under constant compressive stress

We first consider micromodels which are sheared under a prescribed compressive stress (6—y loading
path) much like in the experiments described in Part I.

3.1.1. 2-D model

The 2-D microsection is first compressed to an average stress of 90 ksi (621 MPa) as shown from L] to
in Fig. 5a. The model is then sheared in displacement control while the axial stress is kept constant (
to ). The t—y response obtained is shown in Fig. 5b. As shearing progresses, the shear stress increases,
becoming quite nonlinear at levels beyond 4 ksi (27 MPa). Accompanying the shearing is a correspond-
ing shortening of the model as seen from to 11| in Fig. 5a. Eventually, the shear deformation in the
vicinity of the local imperfection becomes sufficiently large for the axial stress to locally buckle the fibers
initiating the kink band. Concurrently, a limit load is reached at a shear stress of 7.13 ksi (49.2 MPa)
followed by a gradual drop in the stress required to further shear the specimen (note qualitative resem-
blance of results with experimental results in Fig. 3!). The transverse displacement (v(4) in Fig. 1) must,
however, increase for further deformation to take place. It is this characteristic that makes the process
controllable.

Fig. 6 shows five deformed configurations of the model at points indicated by e on the response in Fig.
Sb. They are truncated in the x;-direction (only 43% of the height is shown) for better clarity of the growth
of the zone of localized deformation. The edges of the band are delineated with dots marking the
boundaries of where the equivalent plastic strain in the matrix has reached a value of 8%. (This value was
found to correlate quite well with the location of the highest curvature of the fibers, the criterion we used in
the past for the same purpose.) Using this criterion, in Fig. 7a we plot the width (w, see Fig. 5') of the
growing band as a function of x,. The rotation of the fibers inside the band (¢, see Fig. 5') is plotted against
x, in Fig. 7b.

In configuration @), close to the limit load, the mesh is quite deformed in shear but, with the onset of
localized fiber buckling on the very left of the model, a gradient in fiber rotation is seen to develop. For this
configuration, the region of high strain is relatively small and lies inside the local imperfection.

In configuration @), the zone of highly bent fibers grows both in width as well as length and spreads to
the material outside the local imperfection. The growth of w and ¢ confirm this trend also. Concurrently the
average shear stress drops. An inclined band of bent fibers with an inclination of about 5.5° has now clearly
emerged. Due to the local bending rigidity of the microstructure, for compatibility of deformation,
localized bending tends to propagate in the form of a narrow band quite a distance away (this resembles
Budiansky’s (1983)! “characteristic directions” but in a highly plasticized material instead of the elastic
composite he assumed).

In configuration @), the band has grown further and begins to resemble the experimentally observed
kink band in Fig. 6!. The width of the band continues to grow and so does the rotation of the fibers
inside it, while the gradient from left to right of both remains. The band continues to grow in @ and in
® as it reaches the right side of the model. At this stage, the inclination of the band is 5.7° and its
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Fig. 5. Results from the 2-D model: (a) Axial stress-end shortening and (b) shear—stress horizontal displacement responses.
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width varies between 174 on the left and 18/ on the right (the values of § quoted are based on a linear
fit through the points of maximum fiber rotation inside the band). The fiber rotation inside the band
varies from approximately 8.5° on the left to 7.2° on the right. By configuration (6, the average shear
stress has dropped down to nearly 3 ksi (20.7 MPa). Continued deformation beyond this point is pos-
sible. It will result in rotation and broadening of the band as seen in Kyriakides et al. (1995)! and
Hsu et al. (1998,' 1999a). However, the axial stress required for this to happen drops below the 90 ksi
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3.1.2. 3-D model
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The same calculation was repeated for the 3-D model with the basic characteristics given in Table 2. This
is a much larger calculation, and, for computational efficiency, the size of the micromodel was selected to be
a bit smaller. The calculated responses are shown in Fig. 8. Five deformed configurations (truncated in the
x-direction) corresponding to the points marked by solid bullets on the response in Fig. 8b are shown in
Fig. 9. The edges of the band are identified once more by solid dots marking points in the matrix (central
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Fig. 8. Results from the 3-D model: (a) axial stress-end shortening and (b) shear—stress horizontal displacement responses.

row of elements between fibers — see inset in Fig. 2), which have reached equivalent plastic strains of 6%.
(This lower value of strain was chosen because the central row of elements does not include the zones of
highest stress levels seen by the matrix — see Fig. 14a in Hsu et al. (1999b).) The evolution of the kink band
across the microsection is similar to what was observed in the 2-D micromodel. The band width and fiber
rotation inside the band for the five configurations are plotted in Fig. 10. The main characteristics of the
response and of the evolution of the band are very similar to the corresponding 2-D results. The critical
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Fig. 10. Characteristics of kink band at points marked on 7;,-v(1) response in Fig. 8b: (a) bandwidth and (b) fiber rotation.

3.2. Pure compression

As mentioned in Part I, the initiation of a kink band under pure compression and its evolution across a
finite size specimen occur dynamically and, as a result, are difficult to capture experimentally. Once a kink
band is initiated, the load drops precipitously and energy from the surrounding material that unloads feeds
into the deforming zone. The catastrophic nature of the post-failure response has been demonstrated in
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Table 3

Critical stresses and kink band characteristics for 2-D and 3-D microsections loaded via the o—y loading path
Model type o o ksi (MPa) 7c ksi (MPa) ¢° Iix w/h
2-D PS 0 90 (621) 7.13 (49.2) 8 5.4 16
2-D PSN 0 90 (621) 7.19 (49.6) 7 4.7 16
3-D 0 90 (621) 7.84 (54.1) 6.5 5.6 13
2-D PS 0.1415 90 (621) 7.20 (49.7) 8 10.2 16
2-D PSN 0.1415 90 (621) 7.77 (53.6) * 14.6 *
3-D 0.1415 90 (621) 8.62 (59.4) 7 17.3 13

calculations involving compression of finite size specimens with various types of fiber imperfections
(Kyriakides et al., 1995)". The axial stress-shortening response was found to exhibit a limit load associated
with the onset of failure. Subsequently, the response traced a cusp-like trajectory, a strong indication that it
cannot be followed by normal means of displacement control. Because of the finite width of these models
and the global nature of the imperfections used, the kink bands formed were essentially uniform across the
specimen width. They started with zero inclination and, as fiber rotation grew, they became increasingly
more inclined.

An inclined kink band can be initiated by adding a large enough local imperfection to such micromodels.
We use the same 2-D model used above with the same global imperfection. The local imperfection has the
same amplitude and length but it is extended to affect a strip 25 fibers wide. The initiation process here is a
much more unstable event and a more extensive local imperfection was necessary for proper initiation of a
kink band. The specimen is compressed such that the top and bottom surfaces remain flat. The calculated
-0 response is shown in Fig. 11. It is similar to the ones calculated before for such specimens with uniform
imperfections. However, because of the presence of local imperfection on the left free edge of the specimen,
failure is initiated at 192 ksi (1.32 GPa) about 30% lower than the critical load for the same case in the
absence of the local imperfection. In the vicinity of the local imperfection, the highly rotated fibers cause
earlier yielding of the matrix. An inclined kink band is initiated growing from left to right as seen in the
sequence of deformed configurations (truncated) in Fig. 12. The characteristics of the growing band are
similar to those discussed above for the case of shearing under constant compression (Fig. 13). The in-
clination of the band in configurations @ and (®) is around 4.8° and the width of the fully grown band is
around 154, both of which are very close to the corresponding values in Fig. 7. The fiber rotation inside the
band is also of the same order of magnitude. Continued compression past (B results in an increase in the
fiber rotation and in the inclination of the band.

In summary, the larger initial fiber rotation in the local imperfection causes earlier plastification of the
matrix, and this leads to localized buckling of the fibers. This is associated with the overall limit load in the
response. The localized buckling grows into an inclined band, which is preceded by an inclined charac-
teristic. The tip of the growing band provides a destabilizing shear deformation to the material in front of it
so that the band can grow. When fully developed, the band has an inclination of approximately 4.8° and a
width of approximately 154. To connect with our past work on models with essentially uniform or more
global imperfections, the gradual development of a band in such models, starting from zero inclination at
the limit load and growing to an inclined band with a distinct width, can be viewed as the sequence of events
that take place in the transition zone in the tip of the growing band.

3.3. Band characteristics
The inclinations of the bands initiated in the models presented are in general smaller than the measured

values. The predicted width of fully developed kink bands is closer to measured values but also somewhat
smaller. These differences are partly due to the two-dimensional nature of the idealized composite but, as we
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Fig. 11. Axial stress-end displacement response of the 2-D model loaded in pure compression.

will see, are also due to other factors such as limitations of J, plasticity. A parametric study was undertaken
to explore this issue. The composite parameters varied were the fiber volume fraction (vf), the matrix yield
stress (0,,) and the fiber diameter (%). The imperfection parameters varied were the amplitude (a),
wavelength (4,) and width (N) of the local imperfection, and the amplitude of the global imperfection («).
The main model parameter examined was its width defined by the number of fibers included (7). In ad-
dition, results from plane stress and plane strain models were compared. The main matrix constitutive issue
examined was sensitivity of the problem to pressure sensitivity and inelastic dilatancy of the material. These
are examined by switching to the Drucker—Prager model (o # 0 in Eq. (4a)). The vehicle of the parametric
study is the shear-under compression test described in Part I. The model discussed under Section 3.1.1 with
the parameter listed in the first row of Tables 2 and 4 will be considered as the base case. The major results
from this case are also listed in this table. Each parameter is varied individually while all other parameters
are assigned the values of the base case.

3.3.1. Composite parameters

The composite variable considered first is the fiber volume fraction. The base case has vy = 60%. Thus, in
addition, we analyzed models with v of 50% and 70%. In order to maintain the width of the microsection
constant, the number of fibers was respectively increased and decreased appropriately for the two cases (see
ne in Table 4). Changing the fiber volume fraction results in a change in the shear response of the material,
which has direct implications on the failure stress. In the present setting, we kept the initial compressive
stress at the level of 90 ksi (621 MPa). Thus, the change in shear response results in a reduction of the
critical shear stress for v; = 50% to 6.35 ksi (43.8 MPa) and an increase for v; = 70% to 7.96 ksi (54.9 MPa).
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Fig. 13. Characteristics of kink band at points marked on ¢,—0 response in Fig. 11: (a) bandwidth and (b) fiber rotation.

somewhat for the more compliant material (w = 144). Concurrently, the maximum rotation of the fibers
inside the band decreased for the wider band and increased for the narrower one. We will see that this trend
will persist for the other cases analyzed. This can be explained as follows. A fully developed kink band has

associated with it a lateral deflection, v, which from geometric considerations (Fig. 5!) can be approximated
by

v & wsin ¢. (5)
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In a displacement controlled situation like the one we have in the present simulations, all other variables
being equal, the extent of fiber rotation is governed by the applied lateral displacement v(4). Comparing the
change in the displacement at the initiation of the kink band (near the maximum shear stress) and when it
has fully crossed the micromodel, the values of Av are very similar for most of the cases being considered.
Thus, any variable change that results in a change in the bandwidth will usually correspondingly cause a
reduction in the fiber rotation ¢.

The fiber diameter was varied next. The base case has a fiber diameter of 7 um; in addition, we con-
sidered fibers 3.5 and 14 um thick. Again, in order to maintain the microsection width constant, the number
of fibers was respectively increased and decreased to the number given in Table 4. For the model with
h = 3.5 pm, the initial compressive stress had to be reduced to 60 ksi as the post-failure response could not
be traced until a fully developed kink band formed for 90 ksi. The main effect of altering 4 is that the width
of fully developed kink bands is altered as shown in Fig. 15 due to the change in the effective bending
rigidity of the deforming material. For 2 = 7 um, the width of the band is 16A. Increasing # makes the kink
band wider (w = 214), while decreasing it makes it narrower (w =~ 124). Simultaneously, the fiber rotation
inside the bands decreased for the thicker fibers and increased for the thinner ones for the reason given
above. The band inclination decreased slightly to 4.9° for the thinner fibers and increased slightly to 6.4° for
the thicker fibers.

The next variable varied was the yield stress of the matrix. Here the shape of the stress—strain response
was kept unaltered (Fig. 4a) but the yield stress (a,,, in Table 1 Panel C) is multiplied by factors of 0.5 and
1.5, respectively. This changes the shear response of the composite with a proportionate effect on the
strength. The critical shear stress decreases for the first case to 2.36 ksi (16.3 MPa) and increases for
the second case to 12.2 ksi (84.1 MPa). Fig. 16 shows a comparison of three fully developed kink bands
for the three matrix yield stresses. For the lower yield stress matrix, the width of the band decreases to 124
and the band inclination decreases slightly to 4.9°. For the higher yield stress material, the bandwidth
increases to 18/ while the band inclination increases slightly to 6°.

3.3.2. Imperfection parameters

The parameters of the local imperfection were varied next, keeping other variables constant. The am-
plitude of the local imperfection was reduced to a, = 0.54. The wavelength was increased to 1, = 244. The
extent of the local imperfection was increased to affect 25 fibers rather than the standard 12. The results for
each case are listed in Table 5. The effect on the band characteristic inclination, on its fully developed width
and on the fiber rotation inside the bands is very small. Finally, the amplitude of the overall imperfection
was doubled to a value of @ = 4. In this case, the critical shear stress is reduced to 6.24 ksi (43.0 MPa) and
the band inclination increased slightly to 6.5°.

3.3.3. Model parameters

The effect of the width of the micromodel on the band characteristics was examined as follows. The
standard model was 150 fibers wide. Models 100 and 200 fibers wide were also analyzed. The band incli-
nation was found to increase slightly for the narrower model and to decrease slightly for the wider one
(Table 5). These small changes are caused mainly by the uniform sinusoidal imperfection of the models. As
the aspect ratio of the model changes, the band, because of its inclination, runs into material with different
initial imperfection. When the initial fiber inclination is larger, the band inclination increases somewhat.
When the fiber inclination is smaller, the band inclination decreases by a small amount.

The 2-D micromodels discussed this far were assumed to be under a state of plane stress (2-D PS in Table
3). The base case was also analyzed under plane strain assumptions. The results are summarized in the
second row of Table 3 designated as 2-D PSN. The effect of this switch on the critical stress and on the band
characteristics was found to be small.
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approximately 8°. Fig. 19 shows several deformed configurations of the truncated microsection, which il-
lustrate the evolution of the band as it crosses the specimen. A striking difference between these configu-
rations and those in Fig. 6 is that the inclination of the band is now approximately 10.2° or nearly double
its value for o = 0.

This strong sensitivity of the band inclination to matrix compressibility was confirmed in a series of
additional calculations in which the value of o was varied. The results are summarized in Fig. 20 where the

100
2-D Model I 11
1 %:143 —7;‘&=12 600 o,
(ksi) {4 a, (MPa)
_h = 0.5 Tz 1
n = 150 L 400

| | m 200

o

T r 0
0 0.2 0.4 0.6 0.8
(@) — O/L (%)

0 T T T T T T 0
0 1 2 3

Fig. 17. Results from the 2-D model using Drucker—Prager model for matrix. (a) axial stress-end shortening and (b) shear stress—
horizontal displacement responses.
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Fig. 18. Characteristics of kink band at points marked on tj,—v(4) response in Fig. 17b. (a) bandwidth and (b) fiber rotation.

band inclination is seen to increase linearly with o starting at 5.4° for « = 0 and ending up at nearly 12.4°
for & = 0.192. It is important to point out that the main effect of the D-P model is in the inclination of the
growing band, a post-failure event. The onset of failure is still mainly governed by the shear response of
the composite which is not affected significantly by «. Once failure starts and the band starts to grow,
inside the band there are two main deformation mechanisms. First, the material is sheared by an amount
closely approximated by the fiber rotation angle ¢ (Budiansky and Fleck, 1993)!. As pointed out, the shear
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Fig. 20. Predicted kink band inclination f§ for various values of « in the D-P model.

response of the material is not altered by «, and the shear stress and strain distribution inside the band
remain unaltered. The second deformation mechanism is straining transverse to the fibers. If we adopt the
simplifying assumptions of Budiansky and Fleck (1993)' that the strain along the fibers is negligibly small,
then the transverse strain is given by

e = In {M} . (6)

cosfS

Furthermore, to first order, ¢t also corresponds to the volumetric strain. Fig. 21 shows a comparison of
profiles of strain transverse to the rotated fibers for « = 0 and o = 0.1415. The strains are plotted along the
local coordinate &, (Figs. 6 and 19). Clearly, the dilatation of the matrix allowed by the D—P model results
in the development of higher transverse tension in the matrix in the early stages of its formation. If we
accept that the fiber rotation angle inside the forming band is approximately the same for the two values of
o (Figs. 7b and 18b), Eq. (6) clearly implies that a higher value of ¢r will result in a larger value of the band
inclination f. Indeed, in the range of values of the three variables of interest, for fixed values of ¢ in Eq. (6),
the angle 8 varies linearly with er. Since er is linearly related to ¢, the linear dependence of f to « seen in
Fig. 20 follows.

The 3-D model was also run using the D-P model for the matrix. The results of such a simulation are
summarized in Table 3. The band inclination increased even further to 17.3°. We suspect that the more
complex 3-D microstructure provides even higher constraint to the matrix in the deforming band and a
correspondingly higher f5. The predicted value is higher than the 12-13° observed in the compression—shear
experiments discussed in Part 1. This, perhaps, is another indication that the D-P model does not capture
with accuracy all complexities of in situ PEEK nonlinearities.
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Fig. 21. Evolution of transverse strain ¢r inside kink band for (a) & = 0 and (b) o = 0.1415.

It was interesting to repeat the 2-D simulation with « = 0.1415 under plane strain conditions. The results
are summarized in Table 3. In this case also, the additional constraint increased to some degree the critical
stress but, more importantly, pushed the inclination of the fully developed band to 14.6°.

Finally, we repeated the 2-D pure compression simulation using the D—P model. The results are com-
pared to those of J, plasticity in Table 6. As expected, the effect of the model on the critical stress was
relatively small causing an increase of only 2.5%. Because of the high stiffness of the fibers, the net pressure
that builds up in the matrix is relatively small before the limit load is reached. Thus, the shear response
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Table 6

Critical stresses and kink band characteristics for 2-D microsections loaded under pure compression
o N ac ksi (GPa) ¢° p° w/h
0 25 192 (1.32) 8 4.8 15
0.1415 25 197 (1.36) 8 10.1 15

remains relatively unchanged which reflects on the relatively small change in the limit stress. By contrast,
the kink band inclination increased to approximately 10.1°, a value comparable to that in Table 3 for the
compression—shear simulation.

4. Conclusions

Previously, we developed, calibrated and used 2-D and 3-D micromechanical models of unidirectional
composites to study the onset of failure due to compression and the evolution of post-failure events
(Kyriakides et al., 1995,! Hsu et al., 1998,' 1999a). Failure was found to be associated with a limit load
instability governed by the interaction of the nonlinear shear response of the material with small fiber
misalignments present in the composite (Argon, 1972;' Budiansky, 1983'). Following the limit load, de-
formation is localized in bands of highly bent fibers. The geometric imperfections used in these studies were
primarily global in nature and, as a result, from their onset the bands extended across the width of the finite
size models. The bands started essentially with zero inclination but, as the fiber bending and rotation inside
them increased, they became more inclined.

In the present work, in order to capture how such bands initiate locally and grow across the composite,
local imperfections were added to a free edge of the model. In addition, following the experimental findings
of Part I, the alternate problem of failure due to compression followed by shear was examined as it provides
a more hospitable setting for tracing the post-failure events than pure compression loading. It has been
found that, under displacement controlled shearing, local fiber buckling initiates from the local imper-
fection in the process leading to a limit load in the applied shear. The buckled fibers bend and rotate,
emanating a ‘“‘characteristic” which quickly spreads into the essentially intact material across the model.
Subsequently, localized fiber buckling grows along this “characteristic’’ direction. In essence, the front of
the growing band provides the destabilizing shear deformation for the material ahead of it, so that the band
too can grow. Thus, the gradual development of a band in models of uniform imperfection, starting from
zero inclination at the limit load and growing to an inclined band with a distinct width, can be viewed as the
sequence of events that take place in the transition zone in the tip of the growing band.

Although the main thrust of the study involved compression—shear loading, models loaded in pure
compression were also analyzed. Provided the local imperfection was sufficiently large, it was possible to
initiate and grow inclined kink bands across the models. The cusp-like post-failure response for this loading
makes tracing the kink band more difficult but, for the cases examined, the characteristics of the growing
inclined kink bands were similar to those seen for compression—shear loadings.

The characteristics of kink bands initiated from a local imperfection and allowed to grow across the
model were studied parametrically using both 2-D and 3-D models. At first, the PEEK matrix was rep-
resented as a J, elasto-plastic solid. This model was shown in the past to be quite adequate for calculating
accurately the onset of failure. The following trends were established:

e Once a kink band was initiated, its evolution across the microsection resembled experimental observa-
tions. The calculated bandwidths were comparable to measured values whereas the band inclinations
were uniformly on the order of one-half experimentally observed values of f5.
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e The kink band width increased/decreased with the fiber diameter and to a lesser extent with the fiber vol-
ume fraction. It also increased/decreased with the yield stress of the matrix. By contrast, f was relatively
insensitive to these variables.

o The amplitude, length, and extent of the local imperfection were varied and, within the range of this vari-
ation, no significant effect on the characteristics of kink bands was observed. The same general insensi-
tivity was found when the amplitude of the global imperfection was varied.

e The width of the microsection was also varied and, again, for the range of values examined, the band
characteristics changed very modestly.

¢ Kink bands developed in plane stress and plane strain models were compared and their general charac-
teristics were found to be similar.

e Despite the more complex microstructure of 3-D models, the overall characteristics of predicted kink
bands were similar to those of “corresponding” 2-D models.

Previous investigations demonstrated that the nonlinearities of AS4/PEEK are complicated by inelastic
dilatancy and sensitivity to hydrostatic pressure. The Drucker—Prager model provides a simple framework
for incorporating aspects of this pressure sensitivity of the material (albeit, as shown in Hsu et al. (1999b)
not completely accurately). It was thus adopted in order to enable investigation of the sensitivity of the
solution to variables not available in J, plasticity.

The shear response of the composite is essentially unaffected by the switch to this model. Thus, the
responses of the micromodels up to the onset of failure were essentially unaltered by the D-P model. The
effect of the model was felt strongly in the post-failure events where, for all cases examined, the kink band
inclination increased significantly from the value predicted for the corresponding case using J, plasticity.
The increase in § was even more pronounced for the 3-D model and for 2-D plane strain calculations, due
to the more constrained setting they provide to the growing band. Finally, a parametric study demonstrated
that the calculated band inclination is proportional to the D-P parameter «. Clearly, prediction of kink
band inclinations requires matrix models which accurately capture its sensitivity to pressure and its dila-
tancy.
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